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Abstract

A proposed method of detecting, locating, and sizing accidental fires based on the

solution ofan inverse heat transfer problem isdeseribed. The accuracy of the inverse

problem solution algorithm, bothin Ioeating fires anddetermining their heatreleaserate

is evaluated using computer synthesized ftre data. The validity of the evaluation is

verified using published measurements from large scale compartment fw bums.

Introduction

Inverse problem solution methods represent a suite of powerful techniques that

Cm be applied to the problem of f~e det~tion. ne theory of inverse heat transfer

problems, is quite well deve]oped. For ex~ple, the nxovex-y of the location md heat

release rates of internal heat sources in thermally conducting solids, in radiating gases,

and in convective flow situations given a limited number of discrete transient

temperature measurements has been demonstrated by various workers [1[].

In the present work, the heat transfer problem of interest is the convective

heating of a compartment ceiling by the buoyant plume and resulting ceiling jet of hot

combustion gases originating from an accidental fm. Solution of the inverse heat

transfer problem involves comparing transient ternpexature information gathered by

sensors situated at discrete Ioeations on the ceiling to predictions of thc)se temperatures

by a numerical fire model. Minimizing the residuals between measured and predicted

temperatures gives the most probable kxation and heat release rate of the fn which

generated the plume and ceiling jet.

In the proposed system. transient tcm~ratum @a m Usumcd 10 be collected

by n discrete temperature sensors distributed in a square grid across the ceiling of the

compartment. For the proposed system few limitations on the particular method of
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gathering data for the inverse problem solution exist. As a result many potential sensor

technologies could be candidates for an actual prototype. For example, conventional

sensors such as thermocouples, or fusible links would serve well as sources of data.

Newer technologies such as fiber optic sensors [2] and thermochromic liquid crystal

sensors [31now beingdeveloped promise the fire protection engineer more freedom in

detection system design.

Inverse problem solution algorithm

The problem of locating a fire and determining its growth rate can be formally

posed as an inverse problem. In the present study the problem is taken to be one of

parameter estimation in which three unknown parameters are to be found: x, y, and c%.

The location of the fire is described by the Cartesian coordinates, (x,y), where the fire is

assumed to lie in the plane of the compartment floor. The f~e growth rate is determined

by the parameter% which follows from the functional form of the fire heat release rate

assumed in the present work:

Q =a .~z (1)

The quadratic form is chosen following Heskestad’s recommendation [4] for the initial

stages of fire growth. Here Q is the fire’s convective heat release rate in kW, and t is the

elapsed time from the ignition of the fire in seconds. The parameter to be found, a, is

seen to have units of kW/s2.

Solution of the inverse problem requires two steps: first prediction ,of the

transient temperature field using a numericrd f~e model, and second minimization of the “

residuals between measured and predicted temperatures to determine the most probable

location and heat release rate for the fire. The first step, determination of the

temperature field given the heat source, is commonly referred to as soluticm of the

forward problem. The second step, comparison of transient temp&ature dati] gathered

by sensors to predictions of those temperatures by the numerical fire model to obtain

location and heat release rate information about the fire, completes solution of the

inverse problem.

In the present study the solution of the forward problem is found using the

compartment fwe model LAVENT. LAVENT, a two-zone fire model employing semi-
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empirical models of the buoyant plume and ceiling jet is able to compute convective

heat fluxes from a fire to the ceiling of a compartment [5]. LAVENT assumes that

interactions between the plume and side wall are negligible, and that the compartment

air is quiescent so that both the buoyant plume and ceiling jet remain axially symmetric

about a vertical line drawn through the fire.

Forward problem solutions are found for a set of many fire scenarios, each

consisting of a fire with a given location and growth rate, (x,y,a),, in the relevant

compartment geometry. The zone fire model LAVENT, is employed to predict the

transient temperature field across the compartment ceiling for each fire scenario (x,y,u)

in the set, Using the transient temperature solution for each scenario, thle times at which

each sensor will be activated can be determined, given both the locations of the

temperature-sensitive sensors and their activation temperature. In this way, times-to’

activation for a complete set of fire scenarios, that is, for all possible fire locations and

growth rates, can be generated. This collection of predicted times-to-acltivation covering

ail possible fire scenarios constitutes the database of forward problem solutions used for

the inverse problem solution.

In the present study a complete set of fire scenarios consisted of eight discrete

growth rates from the range 0.001< r%<0.06 kW/s2, and 400 locations situated on a

square grid at increments of 0.05D (where D is the distance between sensors) in x and y.

Due to symmetry only 66 of the 400 fire locations were unique. Therefore, a complete

set of forward problem solutions required a database of 528 fire scenarios. Forward

problem solutions were pre-calculated and stored in RAM in the form of the locations

and times-to-activation of the first five sensors to be activated by the fke: (xi.yi,t~,i; i= 1

to 5).

Given a complete set of forward solutions, the inverse problem solution

algorithm can be applied to a fire of unknown location and growth rate. The data

required for the inverse problem solution are the times at which individual sensors are

activated as a result of the plume of hot gases rising from the fire. Only times-to-

activation for the first five sensors (n=5) activated in a given fire scenario are required.

The inversion algorithm proceeds by subtracting measured times-to-activation from

predicted times-to-activation and then summing the squares of the clifferences. The
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solution to the inverse problem is taken to be the values of the parameters x, y, and u for

the fire scenario which minimizes the sum of squares of residuals over the complete set

of fire scenarios

Simulated fire detection system

The performance of the inverse problem solution algorithm, on which the

proposed fire detection system is based, was evaluated by simulating fires with known

location md growth rate (x,y,cx) in a compartment. Sensor times-to-a~:tivation

calculated for the simulated fires were then used as data for the inversion algorithm to

reconstruct the location and heat release rate of the simulated fires. To provide a

statistical basis for the evaluation of the inverse algorithm, each test consisted of 1000 ; ‘

simulated fires, each with a randomly chosen location, and a fixed growth rate.

All simulations were run assuming a compartment 3x20x20 m in size, with a

smooth, insulated ceiling. In addition, the compartment was assumed to be completely

enclosed, without sources of ventilation. The temperature sensors for the detection

system were assumed to be distributed on a square grid, spaced three meters apart. The

activation temperature for the temperature sensors was selected to be Ta= 311 K. The

sensors were assumed to hang in the hottest part of the ceiling jet, between O and 10 cm

from the ceiling. The sensors were assumed to have negligibly small thermal mass so

that their time response would be essentially instantaneous

Simulation of fire data

The fire model, LAVENT, was used to synthesize the compartment fire data

required by the inverse problem solution algorithm, the sensor times-to-activaticm. To

include the effects of uncertainty that would inevitably arise in a real system, both

random and systematic errors were then added to the LAVENT synthesized firle data.

Use of the same model to synthesize and then to invert data allowed the effects of these

errors added to the synthesized data to be quantified.

TWO types .f error were added to the LAVENT synthesized data. TO 2tCCO!JIItfOr

uncertainty inherent in the fire model used to produce the forward solution, a systematic

error was added to the simulated sensor times-to-activation. The systematic eiror was
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assumed to be linear in elapsed time. To account for sensor ”measurement error, random

values were ako added to the simulated sensor times-to-activation. In this case, the error

added was randomly chosen from a Gaussian distribution with a mean value of zero.

Simulated times-to-activation, t,i~j were then:

F$jm i=i~v i+(a+~fnv,i)+c(~) (2)

where tMvj is the time-to-;ctivatio; of the ith sensor as calculated by LAVENT, a and b

are constants characterizing systematic error, and G(o) is a random number chosen

from a normal distribution with standard deviation O. Note that the parameter a has

units of seconds and represents a constant time bias, while the parameter b, which is

dimensionless, represents a constant percentage error in elapsed time.

To verify that the evaluation of the proposed fire detection system using

synthesized compartment fire data gave realistic results, a parallel evaluation based “on

experimental measurements was undertaken. Measurements made during huge scale

test bums of wood crib fires at the Factory Mutual Research Center by Heskestad and

Delichatsios [6] provided a set of realistic fire data. In that paper, measurements of

ceiling jet temperatures were given versus time and radii from the fires, for eight

different fires. Unfortunately, the ceiling jet temperatures reported by Heskestad and

Delichatsios were given at only six radial locations. As a result, a means to ‘interpolate’

transieht temperature data, at radial distances between those distances for which

Heskestad and Delichatsios reported measurements, was employed.

The interpolation of transient temperature data from the measurements was

accomplished by fitting the measurements to a correlation reported in the same work.

Residuals for the data with respect to the correlation were calculated amd found to fit a

Gaussian distribution. Data could be generated at arbitrary radial positions by using the

original correlation and then adding to the result, residuals randomly chosen from the

Gaussian distribution. Temperature data generated in this way would have statistical

properties identical to the original me%urements.

Results

Results of the

detection are given in

i

evaluation of the inverse problem solution algorithm for fire

Figs. 1 through 6. Two results are of particular interest in the

1}
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present study: the speed with which the system can detect a fire, and the accuracy with

which the inverse algorithm can locate and size the fire.

Figure 1 shows probability distribution functions (pdfls) for times-to-activation

for the first and fifth sensors for a slow-growing fire (w-2.98 W/s2) and a fast-growing

tire (@2.6 W/S2). Upon activation of the fifth sensor the inversion algorithm has

sufficient information to locate the fire. The slow-growing fire is seen to be located in

three minutes and the fast-growing fire within one minute.

Figures 2a and b demonstrate the effect of random errors and systematic errors

on the inversion algorithm’s accuracy in predicting fire location. Results for both slow-

growing and fast-growing fires are given. Location error is reported as the distance

between predicted and actual fire locations, given in centimeters. The effect of random

error is shown in F1g.2a. In that figure, where no systematic error has been added

(LAVENT is assumed to be a “perfect” fire model),. pdf’s for simulations of fires with

no random error (cr=O see) or moderate random error (cr=5 see), are given. Figure 2b

shows the effect of systematic or model error on the accuracy of the inversion algorithm

to predict the fire location. Pdf’s are given for fire data with an added random error with

0=5s for cases of systematic error corresponding to a=Os, a=40s, b=O, and b~.6.

,Errors in location predictions by the inverse problem solution algorithm are seen

to be much more sensitive to random errors in fire data than to systematic errors in the

fire model. This conclusion can be seen more clearly in Figs 3a and 3b where results for

fast-growing fires are given. In Figs. 3a and b both the median location error and 95%

confidence intervals about the median error are plotted versus random error standard

deviation, c. The 95% confidence interval represents a location error greater than the

location errors for 95% or 950 out of 1000 fires in a test run. In Fig. 3a location error is

plotted for three cases of systematic erroc a=O, 20, 40 sec with b= 0.0 while in Fig, 3b

location error is plotted for three other cases of systematic erroc a=o sec with b=O, 0.2,

0.4.

In both figures varying systematic error by varying the parameters a and b has

little effect on either the median or tie 95% confidence intervals for location errors. On

the other hand, increasing the random error standard deviation, C, causes monotonic
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increases in both the inversion algorithm’s median location error and 9!5% confidence

interval.

Figures 4a and b demonstrate the effect of random and systematic errors on the

accuracy of the inversion algorithm to predict the fire heat release rate for fast and slow-

growing fires. Heat release rate error is reported as the ratio of heat release rate

predicted by the inversion algorithm, divided by the actual fire’s heat release rate, at the

time of the fifth sensor activation. The effect of random error is shown in Fig. 4a where

pdf’s are given for fwe data with cr=o and 5 sec with no systematic error, The effect of

systematic error is shown in Fig, 4b where pdf’s are given for fire data with added

random error with 0=5s and cases of systematic error corresponding to a=Os, a=40s,

b=O, and b=O.6.

Figures 5 a and b show the large errors in heat release ra’te predictions that

systematic errors in the f~e model used in the inversion algorithm can lead to. Results

given are for fast-growing fires only. Predicted heat release rate is seen to drop

monotonically below actual heat release rate as either parameter a c)r b increases.

Random errors can be seen to have little effect on the median heat release rate error,

although larger random errors do cause the 9590 confidence intervals on heat release rate

error to spread substantially.

Figures 6 a and b show a comparison between evaluations based on LAVENT

synthesized data and on the experimental measurements taken in a fast-growing fire as

reported in reference [6]. The LAVENT synthesized data contain ranclom error with

0=5 sec and systematic eiror with a=20 sec and b=O.20. The LAVENT synthesized data

are seen to produce results indistinguishable from results based on measurements, if the

proper random and systematic errors are applied.

Conclusions

A proposed fire detection system based on the use an inversion algorithm

capable of determining the location and heat release rate of a fire has been described.

An evaluation of the system under computer simulated fire conditions has produced

three major results:
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First, the proposed system can provide a quick response to the ignition of an

accidental fire. A fast-going fire can be detected within one minute and a slow-growing

fire within three minutes.

Second, the inversion algorithm shows the potential to provide accurate location

and fire heat reIease rate information. Even with Iq.rge random measurement and

systematic model errors 95% of all simulated fires were located within one meter or to

within one-third the sensor-to-sensor distance. Determining the size or heat release rate

of a fire has been shown to be a more difficult task. With random and systematic errors

of the magnitude simulated in the present study an inversion algorithm in fire detection

duty could be reasonably expected to find the heat release rate of an accidental fire only

to within a factor of five.

Third, the use of synthesized data in the evaluation of the proposed inverse

algorithm based fire detection system has been validated. Results of the evaluation

based on computer synthesized data have been “shown to be similar to results based on

measurements of large scale fire tests.
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